Math Virtual Learning

Precalculus

Determining if Measurements Form a Triangle

April 10, 2020

Precalculus
 Lesson: April 10th, 2020

Objective/Learning Target:

Students will determine if the given information creates 1 triangle, 2 possible triangles (ambiguous case), or no triangle.

Let's Get Started:

Watch Video - Determining if a Triangle Exists

Number of Triangles

Not a Triangle

Is a Triangle

Obtuse

Acute

Note: You need to determine the height then compare the side across from your angle.

The side across from the acute angle is longer than the height, but shorter than side n results in the ambiguous case (2 possible triangles).

If its longer than n, then it's ${ }^{n}$ still a triangle and it's unique.

Practice

Now practice determining if a triangle exists with the given information. If so, how many triangles can be created? Hint: Draw and label the given information first.

1) $m \angle A=110^{\circ}, c=19 \mathrm{~cm}, a=32 \mathrm{~cm}$
2) $m \angle A=131^{\circ}, a=25 \mathrm{yd}, c=8 \mathrm{yd}$
3) $m \angle B=100^{\circ}, a=33 \mathrm{~km}, b=29 \mathrm{~km}$
4) $m \angle B=61^{\circ}, a=35 \mathrm{mi}, b=32 \mathrm{mi}$
5) $m \angle A=68^{\circ}, c=34 \mathrm{yd}, a=9 \mathrm{yd}$
6) $m \angle A=57^{\circ}, c=27 \mathrm{~m}, a=25 \mathrm{~m}$

Practice Answers

Now practice determining if a triangle exists with the given information. If so, how many triangles can be created? Hint: Draw and label the given information first.

1) $m \angle A=110^{\circ}, c=19 \mathrm{~cm}, a=32 \mathrm{~cm}$

One triangle

$$
a>c
$$

A is obtuse and the side across from the obtuse angle
(a) is longer than side (c).
2) $m \angle A=131^{\circ}, a=25 \mathrm{yd}, c=8 \mathrm{yd}$

$$
\text { One triangle } \quad a>c
$$

A is obtuse and the side across from the obtuse angle
(a) is longer than side (c).
4) $m \angle B=61^{\circ}, a=35 \mathrm{mi}, b=32 \mathrm{mi}$

Two triangles $\quad a>b>h$
B is acute and the side across $\quad h / 35=\sin (61)$ from the acute angle (b) is longer than the height (h) and $h=35 \sin (61)$
$h=30.61$
5) $m \angle A=68^{\circ}, c=34 \mathrm{yd}, a=9 \mathrm{yd}$

None
a<h
$h / 34=\sin (68)$
$h=34 \sin (68)$
$h=31.52$
A is acute and the side across from the acute angle (a) is shorter than the height (h).
6) $m \angle A=57^{\circ}, c=27 \mathrm{~m}, a=25 \mathrm{~m}$
Two triangles $\quad c>a>h$
A is acute and the side across from the acute angle (A) is longer than the height (h) and $h / 27=\sin (57)$ $h=27 \sin (57)$
$h=22.64$
shorter than the given side (c).

Additional Resources:

Click on the links below to get additional helpful videos as well as additional practice to check your understanding.

Additional Practice \& Answer Key Ambiguous Triangles Possible Triangles With Side-Side-Angle

Helpful Videos

Determine if ambiguous case is 1 or 2 or no triangle

How to determine when you have two solutions for an oblique triangle

Helpful Website to Check Your Answers of Practice Problems
Online Triangle Calculator

